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1. Introduction and Statement of Results
In a recent paper [1] MacCamy considered the following model for one-

dimensional nonlinear viscoelasticity: (u = displacement)

P e RN

t
, ? (1.1) u, = a(o)c(u.x)x - IO aT(t-T)U(ux)xdT + 3,

on (0,1)x[0,»), subject to initial and boundary data of the form

]

u(o,t) =0, u(i,t) =0, t>0

(1.2)

u(x,0) = £f(x), ut(x,O) =g(x), 0<x<1.

i MacCamy showed that the above initial-boundary value problem has a unique
i classical solution for all t when JF is suitably restricted and the data

f,g are sufficiently small; furthermore, the solution is asymptotically

!

‘ stable, i e., tends to zero as t—+x . The essential hypotheses in {1}

i are that a(t) =am+G(t), a_>0, GELl(o,eo), (-1)a

* k =0,1,2, ¢(0) =0, ¢'(¢) >e¢ >0, and la(k)(g)l <o, k =0,1,2 for
all {, as well as various smoothness assumptions relative to o, f, g,

and ¥ and boundedness and growth conditions on F. In addition, it may be

assumed, without any loss of generality, that a(0) =

The model (1.1), (1.2) considered by MacCamy is intermediate between
two extremes, i.e., the cases where (1.1) is replaced, respectively by the

equations

ﬁ (1-3) utt = O(ux)x ’ }(X,t) € (O,l) X [O,eo) ‘
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and

(1.%) u, = g% (c(uk)'+k(ux)uxt)

tt

Equations (1.3), (1.2) model the standard initial-boundary value problem

for one-dimensional nonlinear elasticity and it is well-known that if ¢

is genuinely nonlinear this problem does not have a smooth global solution
for any non-zero data (Lax [9]). Knops [2] has shown that global existence
fails for (1.3), (1.2) when there exists a strain-energy function £ (i.e.,
o(¢) =2'(¢), for all () such that a%(g) > ¢='({) for some a >2 and
all . On the other hand, the initial-boundary value problem associated
with (1.4) alweys has a global smooth solution which is asymptotically stable
no matter how large the initial data f,g are ([3], [4]). It is conjectured
in [1) that global existence of solutions fails for (1.1), (1.2) if the data
are too large.

In the present work we consider the model (1.1) subject to the following

assumptions: a(0) =1, =0, and o(g) = 2'(¢) with a=(g) > (='(¢) for
all ¢ and some a >2. We also assume that there exists g >0 (finite)
such that la'(;), <;, V{;ERl; no sign definiteness conditions are improsed
» ¥ =0,1,2. Then, under appropriate conditions on the
initial data, we will show that any sufficiently smooth solution of (1.1),

(1.2) on [0,T), which lies in the class

5) ¢ ={u:l0,1) ~ H}0,1] :
(1 {u: (o (0,1 I[Z\’zg)llullﬂi <c}




for some real number C > O must satisfy the quadratic growth estimate

2 2 L 2.2
(1.6) iz > fI€lls +2v]g]l, t +vt°, t€lo,T),
L, L, L,

where v > 0 1is an appropriately chosen constant. Other growth estimates
may also be gleaned from the analysis which we will present below, under
various assumptions relative to the initial data, but we do not present

these explicitly here.

Remarks. M. Slemrod [8] has recently proved global nonexistence results for a
problem which is closely related to (1.1), (1.2). Slemrod considers steady
shearing flows in a nonlinear viscoelastic fluid with the shearing stress

glven by
[--]
(r.7) a(foe—XTvx(x,t-T)dT),

¢ a nonlinear, odd, real analytic fucntion, A a positive constant, and
v(x,t) = 4(x,t) the fluid velocity; using the cited constitutive assumption

the evolution equation in [8] has the form
- Mod
- -T-—. -
(1.8) u, = c(fo e - uk(x,t T)dT)x

provided we set the mass density p = 1. If we assume the same kind of
decaying exponential memory in (1.1) as is assumed in [8], allow in (1.1)
for a prescribed past history on (-,0] , integrate by parts with respect to
¢ and then make the obvious change of variables in the integral, it is clear

that (1.1) is equivalent to

> o

L . enthadtiichenhiliong




. remain continuous and bounded

(1.9). uy = -f e Lol (x,t-0)) ar

0

The particular choice of history dependence chosen in [8], i.e., a(t) = e—lt

>
and, more essentially, the particular choice of how the nonlinearity o({)
enters the constitutive theory (and, hence the evolution equation (1.8))
allows the boundary-initial history value problem for (1.8) in [8] to be
transformed into an initial-boundary value problem for a nonlinear hyperbolic
conservation law with linear damping; hyperbolicity for the transformed
problem in [8] is shown to be equivalent to the condition ¢'({) > 0. Once
the problem in [8] has been transformed into‘an equivalent problem for a
nonlinear hyperbolic conservation law with linear damping, it is shown to be
amenable to analysis based on the use of Riemann invariants and an argument
due to Lax [9] to prove that singularities develop, in the solutions of non-
linear hyperbolic equations, in finite time for sufficiently large initial
data; in fact, Slemrod {8] shows that if the initial data are sﬁfficiently
large in certain Sobolev space norms then the second derivatives of the
solution develop. discontinuities in finite time while the first derivatives
(1). The difference in the way in which the
nonlinearity o enters the evolution equations in the models of viscoelastic
response considered, respectively, in [1] and [8], i.e., (1.8) as opposed to
(1.9), seems to preclude an analysis similar to that in [8] being effected

vIs a vis the boundary-initial history value problem for (1.9). In fact

the transformation in [8] is effected as follows: Clearly (1.8) is equivalent

(1)An exposition of Slemrod's work may be found in his recent Lecture [11]
as well as in the forthcoming monograph by this author [13].
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. AT
v, = o(‘fo e Vx(x,t"T)d’l’)x
or vt = c(w)x
* -As
if we set w(x,t) = I e v (x,t-s)ds
_— o x

-]
Now let r(x,t) = I e-xsvt(x,t-s)ds, which is equivalent to
0
Y
r(x,t) = v(x,t) - A I e “Sy(x,t-s)ds
0]
and which, in turn, implies that

[}

v, (x,t) - A I e My (x,t-s)ds
t 0 t

rt(x,t)

Vt(X,t) - lr(xst)

Clearly, then (1.8) is equivalent to

wt(x,t) rx(x,t)

(1.10)

r (x,t) = o(w(x,t)) - ar(x,t)

a strictly hyperbolic system if o'(g) > 0; a similar reduction is not
possible for the evolution equation (1.9)(2). Thus, the global nonexistence
results proven by Slemrod in [8] cannot be carried over to the model of one-
dimensional nonlinear viscoelastic response considered in [1] so as to deduce

global nonexistence of solutions for this case as well. We note that both

(2)Note that the system (1.10) is equivalent to a homogeneous damped nonlinear
wave equation for w(x,t), i.e., wtt-FAwt-c(w)xx =0; it is shown in [11]

(see also Nohel [12]) that (1.9) is equivalent to a nonhomogeneous damped
nonlinear wave equation of the form utt‘qut-c(ux)x = &x,t) .
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(1.8) and (1.9) reduce to the one-dimensional nonlinear elasticity evolution

equation (1.3), for A =0, provided 1lim luk(x,t)l = 0 uniformly in x,

t=-o

and both constitutive assumptions, which lead to these respective evolution
equations, are consistent with the principle of fading memory for simple

materials, i.e., [10].

2. Proofs of the Basic Estimates

As a prelude to proving the growth estimate (1.6), delineated in the last
section, we first need to derive a suitable expression for the energy associa-
ted with our one-dimensional nonlinear viscoelastic model. We define the

total energy to be

I o 1
(2.1) 8(t) = > jo [ulx,t)]7ax + Io Z(ux(x,t))dx
so that
! 1
(2.2) 8(t) = Io Yudx + J‘o Z"(ux)ﬁxd.x
1 1 .
= J‘o fv(ux)xd_x + j‘o z-(ux)uxdx

10t
- Ig u I; aT(t-T)o(uk)xdet
or, in view of the fact that E£'({) =o(f), for a1l &,

1 1
(2.3) 6e) = | & 2 (2 (u))ax + J B )i




1 t >
- I u j' a.T(t-'r) ™ (Z'.'(ux))d'rdx
0 0

1 > ecy
fo 3% (w2’ (u ))ax -

1 t >
J'o u j‘o aT(t-'r) o (Z’(ux))d'rdx

1 t >
-J‘ u(x,t) I aT(t-'r) 5% (2'(ux(x,'r))d'rdx
0 0

]

in view of the boundary conditions (1.21). For the sake of convenience we

now set A(t-t) = aT(t-T) . Then integration of (2.3) yields

t 1 T
(2.4) é(t) - 8(0) = -f ([ a(x,7) [ A(r-2) b—i{—Z'(ux(x,)\))dldx]dT
o 0 0

However,

a 1 T > <
i J‘o u(x,T) jo A(r-2) 5 T (w (x,0) drax =

T

1
ad; j'o u(x,T) ‘fo A(7-M)o (u (x,A)) dhdx =

1 a T
J‘o = (ulx,7) jo A(7-A)o (u (x,1))_dr)ax
1 T
= J‘O a(x,r) ‘[‘o A(r-Mo(u (x,1) dhdx +

1
‘['o u(x,r) J'; AT(-r-A)o(ux(x,l))xdld.x +

1
A(0) jo u(x,'r)c(ux(x,'r))xdx




RS

But, .A(0) = A(t-t) It=T = 5% a(t-r) T -4(0)

by virtue of our hypotheses on a(t). Thus,
a & T d o
(2.5) a;'j; u(x,) J; A(T-2) 5 z (ux(x,k)dkdx =
1 T
jo d(x,7) J‘O A(r-A)o(u (x,1)), ardx +
1 T
Io u(x, ) jo A_(r-Ma(u, (x,1)) drax

1
- a(0) j; u(x,r)c(ux(x,T))xdx

1 T '
Substituting for f a I A(T-h)o(ux)dxdx from (2.5) into (2.4) and
0 (¢]

performing the indicated integration we obtain

1 t
(2.6) 8(t) - &(0) = -jo u(x,t) Io A(t-r)o(u (x,7)) drdx
t 1 T
+ fg [Ig u(x,T) I;\AT(T—K)G(ux(x,X))xdldx]dT
t 1
- a(0) j; IO u(X,T)U(UX(X,T))dedT
i.e., we have the following

Lemma For the one-dimensional nonlinear viscoelastic model (1.1), (1.2)

where 0((C) = Z'(C) for all (, the total energy &(t) is given by




(2.7) 8(t) =

=

jl % (x) © 5(e ()
dx + z(r!' dx
ng j'o x

1 t
I ulx,t) j A(t-'r)c(ux(x,'r))xd'rdx
0 0

t 1 T
[ U uGom) [ (r-Mou (x,0), ahaxlar

+

t 1
a(0) j'o J'O u(x,'r)c(ux(x,T))xdxd'r

Remarks. We note that &(t), as defined by (2.1), satisfies &(t) >0,

YVt > 0; this is a direct consequence of the fact that our assumptions
(3)

relative to o({) imply that Z({) >0, vgeRl . In order to see that

we must have Z({) >0, VC,ER]‘ we first delineate our basic hypotheses,

namely,
(2.8a) 5 >0 such that [o'(¢)]| <o, vg&‘Rl
(2.8b) 8 >2 such that ox(C) > (='(C), VCER:

Now, by (2.8b), =(0) >0. Also, for § £ 0, -9—(2%)) - £21(e) -ox(g) .

ds CCX+].
Therefore, for { > O, we have by (2.8b), ag-(g-gl) < 0 so that Z(g)
a2 a
g ¢
is nonincreasing on (0,®) and —ll—m—*_- &é-)— > 0. By (2.8a) we have that
¢—0 ¢

lo(Q)] < lo(0)] +5lcl ena |(g)] < 2(0)] + |o(@)] |¢] +5l¢l?. as a>2,

(3) This fact was noted by a reviewer who read an earlier version of the
manuscript and it is his proof of this fact that we reproduce below.




- 42
there;\ore’ we have l_z_:%ll < IZ(OH + IC’(OC)IHC,! +0'IC| ~0 as (—+o.

¢
Thus, g%él is nonincreasing on (0,») and satisfies _LEEI Ko 20 and
¢ ¢mo

lim lgﬁg—l = 0; hence, gé)-z O for { >0 which implies that Z({) >0
("te o

for (>0. Now, define A({) = ©(-C) . Then A'({) = -Z'(C) and, by (2.8b),
EA'(C) = -3&'(-C) <a%(-C) = oA{{) . Repeating the argument given above yields
the conclusion that A({) >0, Y{ >0 and, thus, () >0, Y(<O0. We
conclude that Z({) >0, vgeRl, and thu &(t) >0, Vvt >o0.

We are now ready to prove the main result of this paper, namely, the
quadratic growth estimate (1.6) for the L2 norm of sufficiently smooth
solutions of (1.1), (1.2) which lie in the class C. For the remainder of
the paper we will assume that a(t) satisfies the smoothness hypotheses

t T t 1/2
(2.8c) sup [ |&(t=r)|ar <o, [ (] &(t-r)ar) at<e
o,T) "0 00
and we set
2

t T t 1/
L4 1 13 fv2
p = 20T+ (1-3) B, jo |&(t-r)|ar + /T jo(joa (t-r)ar)  dt

2

x
1}

©

o
I

max (6(0) , 3% )
Then, we have the following

Theorem. Consider the nonlinear one-dimensional viscoelastic initial-boundary

value problem (1.1), (1.2) with a(0) =1 and JF = o) 1

(%)

Without loss of generality we may also assume that ©(0) = 0; for ease
of exposition this is assumed in the proof below.




satisfying

then |ju(t)|

]

Define %(t)

or, in view of (1.1)

~ B

i
i
¥
i
E

u€C2((0,1)X[O,T)) NC is a solution of (1.1), (1.2) with initial data

1 l/2
f(x)g(x)ax > v(‘r iz(x)d.x) / , V= 2ab
0

satisfies the quadratic growth estimate (1.6) on [0,T) .

1l
Wl = P tax, t>o0.
2 0

1 (t) 1 fl >
2 wudx, U(t) =2 uidx +2] G dx
IO ’ ‘rO 0

1o, 1,
2]‘ u—z'(u)dx+2j‘ ax
0 0x X 0

1t >
- zjo u _]‘o A(t-1) % 2'(ux)d'rdx

1, 1
2]’0 o= (uZ'(ux))dx - ej'o uxZ'(ux)dx

o =

YT :
o= (J'o A(t-t)u(x,t)Z (ux(x,'r)d‘r)dx

2]

|

t
2f jo A(t-)u (%, )5 (u (x,7) )drax

+
o

-

+ 2‘]v wax

= O

1
2 uZ'(u )ax +2f t2ax
o ¥ % 0

-+

l ¢t
2‘[‘ j‘ A(t--r)ux(x,t)i’.’(\&(x,'r))d'rdx
0 0




again, in view of the homogeneous boundary data (1.21). Adding and subtracting

1
20 j E(ux(x,t))dx, o >2, in the last line of (2.11) we obtain
0

. 1
(2.12) Ut) = 2j‘0 (@Z(u (x,t)) - ux(x,t)z'(ux(x,t))dx
1, 1
+ 2j' 4 (x,t)ax - 2o j’ z(ux(x,t))dx
0 0
1t
+ ejo 'fo A(t-r)u (x,£)%' (u (x,7))drax

L 1
>2f W(x,t)ax - 2a [ Z(u, (x,t))ax
0 0

1t .
+ 2]‘0 j'o At-m)u (x,)2' (u (x,7))arax

in view of our hypothesis (2.8b) relative to Z({). Combining (2.122)

with the definition (2.1) of &(t) now yields

- 1.0 1 4.2
(2.13) W) >2f W (x,thax - 2a(8(t) - 5 [ & (x,t)ax)
= 2%

1t
+ 2]' f A(t-'r)ux(x,t)Z'(ux(x,'r))d'rdx
0O 0

1.
= (242) [ W (x,t)ax - 206(t)
0

1 t
+ EI j‘ A(t-'r)ux(x,t)Z'(ux(x,'r))d'rdx
0 0

We now make use of the preceding lemma to substitute for &(t) in (2.13)

and, in this manner, obtain
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(2.14) 25(t)

From (2.10) we have
(2.15)

and therefore

13
1.
> (2+) j‘ U (x,t)dx - 2a8(0)
0
1 t
+ 2aj u(x,t) j A(t-'r)o(ux(x,'r))xd'rdx
0 0
t 1 T
- 2 ‘['o [J‘O u(x,r) J'o AT(w-h)c(ux(x,k))xd)\dx]d'r
1

t
+ 2aa(0) Io J' u(x,'r)o(ux(x,'r))xdxd-r
0]

1t
+ 2 IO '{‘0 A(t-'r)ux(x,t)Z' (ux(x,'r))d*rd.x .

1
£(6) = (] ulax)®
0

. . 1 1
(2.16) Ueout) - GBI (L) > (ol vax | Pax
(0] 0

1 2
- (j‘ ulidx)) - 22(t)8(0)
0
t 1 T
- 2oy(t) j‘o [j‘o u(x, ) ‘Yo AT(T-x)c(ux(x,x))xdmx]dT
1t
—j' j' A(t—-r)u(x,t)c(ux(x,'r))xd'rdx
0°0

1 1t
-5 j'o j'o A(t-'r)ux(x,t)o'(ux(x,-r))d-rdx

i

,.l_“.. M
ihihamaiad L § "y y . b bbb i ‘




1L

t 1
+ &(0) J‘O f u(x,q-)c(ux(x,w))xdxti'r
0

> 200(t) -(a(o).) -

1 ¢t
j.O [j‘o u(x,r) j‘; AT(T—K)o(ux(x,x))xdld-r]dx
1l ¢
+ (1/0) J‘o J'o A(t--r)ux(x,t)c(ux(x,'r))d'rdx
1l t
+ j‘o J‘o A(t--r)u(x,t)c(ux(x,'r))xd'rdx

t 1
+ a(0) Io J'o u(x,'r)c(ux(x,-r))xdxd-r)

by virtue of the Schwarz inequality and our hypothesis relative to &(0) .

However,

1l ¢t
+ Io j; A(t-T)u(x,t)O(ux(x,T))xdex =

)

t
+ ‘fo 5% (‘['0 A(t-v)u(x,t)a(ux(x,v))d-rdx
1t
- ‘fo ‘fo A(t--r)ux(x,t)a(ux(X,T))d'rdx

1l t
= -, § Alterda ot () arex

in view of the homogeneous boundary conditions relative to wu(x,t) and,
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therefore, (2.162) may be rewritten in the form

(2.17) UeIut) - ((-"fz-)'z'f(t) > -2u(t)|8(0) +
1 ¢ T
fo [Io u(x,T) Jo AT(-r-k)c(ux(x,l))xdld'r]dx
1. Lt
+(1-3) j'o j’o At-r)u (x,t)o(u (x,7))drax
t 1
- a(0) Io Io u(x,-r)o‘(ux(x,'r))xdxdT

Our aim, at this point in the proof, is to bound, from above, the three

To this end we have the

integrals on the right-hand side of (2.17).

following series of estimates (beginning with the second integral expression):
1 ¢
lj‘ J A(s-mu (x,t)0(u (x,7))arax]|
00 x X

t 1
< j‘ Ja(t-r)| J‘O |ux(x,t)| |c(ux(x,'r))|dxd'r
0

| t 1, Y2 1, 2
<J 1A= & xt)ax)  (f o%(u (x,7))ax)  ar
o 0 0
t 1, 1/2
} < llas 8| lj’ |a(t-D) ([ @ (ux(x,'r))dx) ar

However, in view of (2.8a)
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1 1l
‘['o 02(ux(x,'r))dx 552 j’o ui(x,'r)d'r

and, therefore
1l t
(2.18) ”‘o ‘[‘0 A(t-T)ux(x,t)c(ux(x,T))d-rd.x[

t
< E”u(- ’t)”}% IO [A(t-+) ' [EIC ,T)”Hé ar

t
<3 s flu+, o) )7 [ [aGs-n)ar
[0,T) Hy "o

t
<3( sup flu(+, )| P? sup [ ]a(t-)as
{o,T) 5 Lo )

Next, if we integrate by parts in the first integral on the right-hand

side of (2.17) and estimate as in (2.18) we obtain
1l t T
”‘0 ['[‘o u(x, ) ‘fo AT(T-A)c(ux(x,l) )xdld-r]dxl
1 t T
= IJ‘O [JO ux(x,'r) Io AT('r-k)c(ux(x,x))dld-r]dxl
t 1 T
= ”0 [j‘o ux(x,‘v)('f0 AT(-r—A)c(ux(x,l))dk)dx]d'rl

t 1
I 15 o y; (1Mo (u, (x,)an)ax] ar
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b R (A et a0
< ,T)dx) A (7= ,A))aa d
< IO fo u(x, 7 IO j; 1Mo (u (x ax -

t 1 s 1/2
< [gt:g)llu(-,t)ll}% jo (fo ( J‘o A _(r-Mo(u (x,0))an)"ax)  ar

However,
1 T 5
j (I AT(T-k)o(uk(x,k))dx) ax
o 0
T o 1l = >
< fo AT(T-l)dh J; J; o (ux(x,h))dde

T2 2 T oo
< (fo AT(T-l)dx)a j‘o j‘o u (x, 1) dAdx

’ - o,2) 2 a ' A2 -X)dl
o jg ftul ”Hé js L

and, therefore,

l1 ¢
(2.19) IR CONPEVICNCRV IR

t
<g o,t)
< c[gl’lg)ﬂu( ”n}, J ) ¢

1/2
j; Af('r-l)dh) /
d 1/2 o
() luG,WIF a0 ar i
0 He

5J/T (sup Jlae,8)] )° j‘T ; 2 (t-1)a s
< T (- o,t -7)ar
| =° [gl.q';) : Hcl) 0 ‘ro b

\ _ > I b 5 1/2
| =3 /T ( sup |lu(s,t)| ,) I (I & (t-r)dr) ar
{o,T) Hg 0’0




:
!
f
i
;
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Finally,

t 1
(2.20) lj'o ‘(‘o u(x,7)o(u (x,7)) dxdr|

)]

t 1
”o j‘o ux(x,'r)c(ux(x,'r))dxdTl

t 1 1/2 1 1/2
$I( nan” (] ola e e
0 0

_ t 1, 1/2
<g [zl,lg)“u(.’t)“}% j‘o (J‘O u (x,7)ax)  ar

<& 7 sup [la+, 0] 7

[o,T) Hy

Combining the estimates (2.18)-(2.20) with (2.17) then yields the Qifferential

inequality
(2.21) utIU(E) - CE2E ()

> 20 U(t)[8(0) + Bwy [ sup I, 0] 417
[o,T Ho

v

-2 Y(£)(8(0) + FwuyC)

-’-laﬁ 'M(t) ’

v

in view of the definitions of %,,% and our hypothesis that u(*,t)ec. 1If
we now set y = (@-2)/4 and define N 208/(2y +1) = 205/(-1) then (2.21)

has the equivalent form

e ki s mansdii g .-s..,.p-:...




(2.22) UBUL) - (y+DE (L) > 2F(y+1)Yt), 0Lt <T

a differential inequality which has appeared several times in the recent
literature on ill-posed initial boundary value problems associated with
nonlinear partial differential equations of hyperbolic and parabolic type;
indeed, by (2.9) and the definition of U(t), %(0) >0 and, thus 7(t) >0
for te[0,7) . Following the analysis in Levine [14], therefore, we may (5)
multiply both sides of (2.22) by -y(U Y(t))' (u'(Y+2)(t))" , for tel0,7)
and integrate both sides of the inequality over {O,t) so as to obtain

(compare with [1k], II-15) for te[0,7)
(2.23) LY 1P - BBy (BYHL) ()
> LY - w2 By () s o

where the right-hand side is positive by virtue of the definition of %Y(t)
and our hypothesis (2.9) relative to the initial data. Proceeding as in [14]

we factor both sides of (2.23) and rewrite the inequality for te [0,M] as
(2.24) 7Y (e) - 2y (Y/2) () (Y () + 2yt (Y2 (1))
> (@ Y(0 - 2yt (VY2 (0)) (7 V(o) v 2yt Y1/2) ()

- ’ -
Again, by (2.9), the factor % T(0) +2yW (¥*1/2)(0)) < 0 and thus, as
neither factor in (2.24) can change sign on [0,7] (by virtue of our smoothness

assumptions relative to %U(x,t)) we have

(5)At this point we use also the / notation for differentiation w.r.t. t,

i.e. ( )' = :—t( ), the new notation being introduced so as to avoid

expressions like (Y Y(t)).
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(2.25) WYY < -2yf VY2 (1) | teo,m]
Now, suppose that ?..((T]) = 0. Then by (2.23)
o { ] 2 2 2 ’(2Y+1)
[¥w ? - w2 A By D)
- -llY2V2'L(-(2Y+l)('ﬂ) <o

contradicting the fact that (2.23) holds at t =17 . Thus, %t) >0 for
te[0,T) and (2.23), as well as (2.25), hold for t¢€[0,T); direct

integration of (2.25) then yields the estimate
(2.26) %) > (vt +12(00)2, o <t<T

which by virtue of the definition of %(t) is easily seen to be equivalent

to (1.6).

.o " At

Closing Remarks. Dafermos and Nohel [15] have recently generalized the

i global existence result of MacCamy using energy methods in lieu of Riemann
invariants; their method is applicable to problems ip more than one space
dimension while the Riemann invariant argument is not. Also, the authors in
[15] do not require that Ic(k)(C)l <o, k=0,1,2, ¥(e gt but, rather,

only that ce c3(a1) with o¢(0) =0, ¢'(0) > 0. For further details the

reader may consult [15] or)the extensive discussion of this paper by Dafermos
and Nohel which is contained in Bloom [13, chp II]. More recent work on the
nonlinear viscoelastic model (1.1), (1.2) includes that of Staffens [16], and
Dafermos and Nohel {17].
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